Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
نویسنده
چکیده
Developmental gene regulatory networks (GRNs) are assemblages of gene regulatory interactions that direct ontogeny of animal body plans. Studies of GRNs operating in the early development of euechinoid sea urchins have revealed that little appreciable change has occurred since their divergence ∼90 million years ago (mya). These observations suggest that strong conservation of GRN architecture was maintained in early development of the sea urchin lineage. Testing whether this holds for all sea urchins necessitates comparative analyses of echinoid taxa that diverged deeper in geological time. Recent studies highlighted extensive divergence of skeletogenic mesoderm specification in the sister clade of euechinoids, the cidaroids, suggesting that comparative analyses of cidaroid GRN architecture may confer a greater understanding of the evolutionary dynamics of developmental GRNs. Here I report spatiotemporal patterning of 55 regulatory genes and perturbation analyses of key regulatory genes involved in euechinoid oral-aboral patterning of nonskeletogenic mesodermal and ectodermal domains in early development of the cidaroid Eucidaris tribuloides These results indicate that developmental GRNs directing mesodermal and ectodermal specification have undergone marked alterations since the divergence of cidaroids and euechinoids. Notably, statistical and clustering analyses of echinoid temporal gene expression datasets indicate that regulation of mesodermal genes has diverged more markedly than regulation of ectodermal genes. Although research on indirect-developing euechinoid sea urchins suggests strong conservation of GRN circuitry during early embryogenesis, this study indicates that since the divergence of cidaroids and euechinoids, developmental GRNs have undergone significant, cell type-biased alterations.
منابع مشابه
Divergence of gene regulatory network linkages during specification of ectoderm and 3 mesoderm in early development of sea urchins 4 5
Classification: Biological Sciences, Developmental Biology 1 2 Title: Divergence of gene regulatory network linkages during specification of ectoderm and 3 mesoderm in early development of sea urchins 4 5 Short Title: Divergence of GRNs in early echinoid embryos 6 7 Author Affiliations: 8 Eric M. Erkenbrack and Eric H. Davidson 9 10 Division of Biology and Biological Engineering, California Ins...
متن کاملEmbryonic, larval and juvenile development of tropical sea urchin, Diadema setosum
Diadema setosum (Leske, 1778), is one of the common echinoids widely distributed in the Indo-West Pacific Ocean, where it occurs from the Red Sea, Persian Gulf and the east coast of Africa to Japan, Australia and Malaysia. To investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of D. setosum in a controlled laboratory condition at the In...
متن کاملEmbryonic, larval and juvenile development of tropical sea urchin, Diadema setosum
Diadema setosum (Leske, 1778), is one of the common echinoids widely distributed in the Indo-West Pacific Ocean, where it occurs from the Red Sea, Persian Gulf and the east coast of Africa to Japan, Australia and Malaysia. To investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of D. setosum in a controlled laboratory condition at the In...
متن کاملDiversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos.
Specification of the non-skeletogenic mesoderm (NSM) in sea urchin embryos depends on Delta signaling. Signal reception leads to expression of regulatory genes that later contribute to the aboral NSM regulatory state. In oral NSM, this is replaced by a distinct oral regulatory state in consequence of Nodal signaling. Through regulome wide analysis we identify the homeobox gene not as an immedia...
متن کاملReorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid
Echinoids, or sea urchins, are rare in the Palaeozoic fossil record, and thus the details regarding the early diversification of crown group echinoids are unclear. Here we report on the earliest probable crown group echinoid from the fossil record, recovered from Permian (Roadian-Capitanian) rocks of west Texas, which has important implications for the timing of the divergence of crown group ec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 46 شماره
صفحات -
تاریخ انتشار 2016